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System Design For High Performance

❑ Designing hardware for low delay -> High clock speed

❑ Designing hardware for high throughput

❑ Techniques including
o Pipelining

o Wider datapath width

o Latency and duty cycle

o Implementing computation as filters



Pipelining: Back to Flynn’s Taxonomy

SISD
Single-Instruction
Single-Data
(Single-Core Processors)

SIMD
Single-Instruction
Multi-Data
(GPUs, SIMD Extensions)

MISD
Multi-Instruction
Single-Data
(Systolic Arrays,…)

CPU/GPU FPGA target



Implementing Computation as Filters

❑ Filter: Computation unit looking at a small window in a data stream, 
emits a different stream
o Colloquial definition…

o Can be implemented architecturally, via MISD systolic array

❑ Only looks at a small window -> Small memory requirement!
o Even if input/output data is large, no need to store it all anywhere

o Everything is processed in a streaming manner

❑ Reduces memory requirement
o On-chip BRAM resources are precious

o If we can avoid going to off-chip memory, great performance save!



❑ “Discrete signal processing filter whose response to a signal is of finite 
length”

❑ Simple intuition: Each output of the filter is a weighted sum of N most 
recent input values
o Convolution of a 1D matrix on a streaming input

o Used to implement many filters including
low-pass, band-pass, high-pass, etc

o Weights are calculated using Discrete Fourier Transforms, etc

Example: 
Finite Impulse Response (FIR) Filter



Naïve, Non-Filter Solution

❑ Store all input in array, and loop over it
o Two layer FOR loops, one over array, one over window (i-N to i)

o Either store or emit results of each 1st-level loop

o Uses one ALU, CPU-style sequential programming approach (1 op per cycle)

❑ This solution is very inefficient in hardware
o First, needs memory to store array 

• Either precious on-chip memory, or expensive off-chip memory

o Second, only one element processed each cycle
• One cycle ~= One inner loop iteration -> N cycles per ouput!

• Better if we can break array into parallel portions, but adds circuit space overhead for managing 
computational state of each processing element

Input



Pipelining an
Finite Impulse Response (FIR) Filter

❑ Every pipeline stage multiplies x[i]*b[j] and forwards accumulated result
o For window size of N, instantiate N multipliers! 

o N multiplications per cycle + log(N) adders per cycle

o For N == 4, 7 ops per cycle!

b[1]

x[i]

b[2] b[3]

in

b[0] × × × ×

+ + out+

Pipelined tree of adders

N multipliers

× × × ×

+ +

+

in

out



FIR Filter In Bluespec
Static Elaboration!



Example Application:
Gravitational Force  

❑
𝐺×𝑚1×𝑚2

(𝑥1−𝑥2)
2+(𝑦1−𝑦2)

2

❑ 8 instructions on a CPU – 8 cycles*
o One answer per 8 cycles

o Ignoring load/store

❑ FPGA: Pipelined systolic array
o One answer per 1 cycle

o 200 MHz vs. 3 GHz makes a 
bit more sense!

o Very simple systolic array 
– We can fit a lot into a chip
– Unlike cache-coherent cores

× × - sq - sq + ÷

t=0
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t=7

Complicated with superscalar, OoO



Pipelined Implementation Details

× × - sq - sq + ÷

𝐺 ×𝑚1 ×𝑚2

(𝑥1 − 𝑥2)
2+(𝑦1 − 𝑦2)

2

G
m1
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x2

x1

y2

y1

flip-flops/registers

Latency: 8 cycles, throughput: 1



Pipelined Implementation Details

× ×

- sq

- sq + ÷

𝐺 ×𝑚1 ×𝑚2

(𝑥1 − 𝑥2)
2+(𝑦1 − 𝑦2)

2

G
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x2

x1

y2

y1

Latency: 4 cycles, throughput: 1

Latency doesn’t matter too much if this is simple stream processing.
If later computation depends on earlier results, latency becomes important!

6 input elements per cycle (excluding G)! 24 bytes! Does our bus support it?



Pipelined Implementation Details
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Latency: 4 cycles, throughput: 1 Latency: 5 cycles, throughput: 1/3



Important Aside: Little’s Law

❑ 𝐿 = 𝜆𝑊
o L: Number of requests in the system

o 𝜆: Throughput

o W: Latency

❑ Simple analysis: Given a system with latency W, in order to achieve 
throughput, we need to be processing at least L things at once



Example: Floating Point Arithmetic in FPGA

❑ Floating point operations implemented using CLBs is inefficient
o CLB: Configurable Logic Blocks – Basic unit of reconfiguration

❑ Xilinx provides configurable floating point “cores”
o Uses DSP blocks to implement floating point operations

o Variable cycles of latency – variable maximum clock speed

o Configurable operations (+-*/…) and bit width (single/double/other)

o e.g., Single-precision (32-bits) floating point multiplication can have 7 cycles of 
latency for the fastest clock speed/throughput



Example: Floating Point Arithmetic in FPGA

❑ Simple example: a×b×c 
o Uses two multiplier cores, 7 cycle latencies each

o c also needs to be forwarded via 7 pipelined stages

❑ What happens if c has less than 7 forwarding stages?
o From 𝐿 = 𝜆𝑊 : If we have L = 4, W = still 7 → 𝜆=4/7

a,b ×

c

If a,b,c are not inserted every cycle, some cycles may emit garbage answers
Each intermediate value must be tagged with valid/invalid tag! Or…



Floating Point Arithmetic in Bluespec

FloatMult#(8,23) mult1 <- mkFloatMult;
FloatMult#(8,23) mult2 <- mkFloatMult;
FIFO#(Float) cQ <- mkSizedFIFO(7);
rule step1;
  Tuple3#(Float,Float,Float) a = inputQ.first;
  inputQ.deq; 
  cQ.enq(tpl_3(a));
  mult1.put(tpl_1(a),tpl_2(a));
endrule
rule step2;
  Float r <- mult1.get;
  cQ.deq;
  mult2.put(r, cQ.first);
endrule
rule step3;
  let r <- mult2.get;
  outputQ.enq(r);
endrule

❑ Forwarding stages abstracted 
using a FIFO
o FIFO length doesn’t have to 

exactly match latency – Only 
has to be larger
• Some freedom of internal 

implementation

o Latency-insensitive (or less 
sensitive design)

❑ If fifo.notEmpty, valid result!



Another example:
Memory/Network Access Latency

❑ Round-trip latency of DRAM/Network on FPGA is in the order of 
microseconds

❑ Let’s assume 2 us network round-trip latency, FPGA at 200 MHz
o Network latency is 100 cycles

o Little’s law means 100 requests must be in flight to maintain full bandwidth, 
meaning the forwarding pipeline must have more than 100 stages

o mkBRAMFIFO

req

Network

resp…

Request context forwarded

time



Replicating High-Latency Pipeline Stages

❑ Some pipeline stages may inherently have high latency, but cannot 
handle many requests in flight at once
o The GCD module from before is a good example (Large W, but L=1)

o Replicate the high-latency pipeline stage to increase L

❑ Example: In-memory sorting
o Sorting 8-byte element in chunks of 8 KB (1024 elements)

o Sorting module using binary merge sorter requires 10 passes to sort 8 KB
• 1024*9 cycle latency (last pass can be streaming)

• Little’s law says we need 1024*9 elements in flight to maintain full bandwidth

• Sorter module needs to be replicated 9 times to maintain wire-speed



Analysis of the Floating Point Example

❑ Computation: a*b*c

❑ Let’s assume clock frequency of 200 MHz

❑ Input stream is three elements (a,b,c) per cycle = 12 Bytes/Cycle
o 200 MHz * 12 Bytes = 2.4 GB/s

o Fully pipelined implementation can consume data at 2.4 GB/s

o If we’re getting less than that, there is a bottleneck in computation!

❑ What if we want more than 1 tuple/cycle?



Increasing Datapath Width

❑ Increase the amount of data processed each cycle per pipeline
o Performance loss if the datapath is slower than processing

o If clock is fixed, datapath speed increased by widening

❑ Processing then may be modified for even higher throughput
o Replication, algorithm redesign, pipelining, …

Processing Processingvs

8 Bytes/Cycle @ 200 MHz = 1.6 GB/s 32 Bytes/Cycle @ 200 MHz = 6.4 GB/s



Important Aside: Roofline Model

❑ Simple performance model of a system with memory and processing

❑ Performance is bottlenecked by either processing or memory bandwidth
o As compute intensity (computation per memory access) increases, bottleneck 

moves away from memory bandwidth to computation performance

o Not only FPGAs, good way to estimate what kind of performance we should be 
getting in a given system

We don’t want our computation
implementation to be the bottleneck!
Goal: Saturate PCIe/Network/DRAM/etc



Example: Delta Compression

❑ For each element in array, subtract the previous element from the 
current one
o If the delta is typically low, this reduces the average element size

o Efficient encoding can use less bits for smaller values

❑ Naïve implementation keeps one “last” value, initialized to zero
o Processes one element per cycle

o For 32 bit elements, 4 bytes per clock cycle (@ 200 MHz, 800 MB/s)

Subtract

Last 
Value

NVMe SSDs provide ~4 GB/s!



Example: Delta Compression

❑ One solution: replicate engines
o Stream needs to be broken into independent chunks 

o If processing expects in-order processing, chunks must be reassembled in order
• Requires memory for temporary sorted data

❑ Alternative: Wider datapath
o Easy for encoding! Independent per element

o For 32 bit elements, 16 bytes per clock cycle 
(@ 200 MHz, 3.2 GB/s) DN

DN+1

DN+2

DN+3

Subtract

Last 
Value

Subtract

Subtract

Subtract

CN

CN+1

CN+2

CN+3



Example: Delta Decompression

❑ Decoding is a bit more complicated
o DN+1 now depends on decoded DN

o New “Last Value” depends on all D data
• Very long combinational path, with a chain of 4 adders

❑ Most likely will reduce clock speed

CN

CN+1

CN+2

CN+3

Add

Last 
Value

Add

Add

Add

DN

DN+1

DN+2

DN+3



Example: Delta Decompression

❑ One solution: Pipeline!
o The chained addition can be done first, in a pipelined way

• No dependency across tuples yet, so latency not a big issue

o Adding last value done at once after all chain adds are done
• Update last value in same cycle for the next input tuple

CN

CN+1

CN+2

CN+3

Last 
Value

Add

Add

Add

DN

DN+1

DN+2

DN+3Add

Add

Add

Add

Some thinking is often necessary for efficient wide processing (Like efficient processing with SIMD) Q: What if 4x parallel 
addition has long critical 
path?



Datapath Width Bottleneck

❑ A single datapath with a small width can bottleneck the whole pipeline
o Unless it is on a path taken rarely

o In that case, other widths can be made a bit wider to statistically compensate

Processing Processing Processing

Bottleneck!



Latency And Duty Cycle

❑ We have a problem if 4 parallel additions have long critical path
o Why? Perhaps routing, fan-out, etc, …

❑ “Last Value” needs to be read, and then updated in the same cycle
o If we pipeline the adds, the next input tuple will work on stale data

❑ This issue happens a lot! Especially for computations requiring shifts…

Last 
Value

Add Add Add

Update for N

Stale data from N-3



Latency And Duty Cycle

❑ For correct operation, pipeline must stall until dependency is resolved
o In previous example, only one tuple processed per 3 cycles

o Data throughput reduced to 1/3!

o Since only one adder is used per cycle anyways, might as well only instantiate one 
adder and re-use that

❑ Duty cycle reduced to 1/3 …



Register/
FIFO

Some Prominent Sources of Latency

❑ Remember: Variable-length shift has long critical path

❑ Solution: Pipelined shifts
o Much smaller number of muxes (~1 typically) per cycle

o But, now has high latency

o Performance loss if dependency exists

❑ Remember: Variable-index array access has long critical path

❑ Solution: Pipelined tree of scatter/gather
o Much smaller number of muxes (~1 typically) per cycle

o But, now has high latency

o Performance loss if dependency exists

A[0]

A[1]

A[2]

A[3]

Like how we re-organized computation for wider datapaths, tricks can often be played to achieve both goals



Example: Variable Length Decoding

❑ Data packet consists of a header (length) and variable-length data
o We want to process one data element per cycle

o Assume maximum data length is smaller than the datapath

o Common pattern in data compression/encoding/packetization

❑ Since we have a fixed data path width, simplest solution uses variable-
length shifts
o e.g., buffer <= (buffer>>shiftamt) | (newdata<<shiftamt);

o Moves the next header to Lowest Significant Bit (LSB)

Shift

Buffer Buffer

New
Data

Shift

Datapath
WidthInput Stream

“Buffer” creates a dependency, reducing performance

Datapath
Width



Example: Variable Length Decoding

❑ Two separate dependencies to handle
o To do header decoding, header must be at LSB

o Data must be “packed”, so that each data element is sent without internal gaps



Example: Variable Length Decoding

❑ Solution 1: Relax dependency for header decoding
o May require data structure modification

o e.g., group more headers together, or store headers separately

❑ Grouping headers can have more data in pipeline, but not always
o Dependency between last element and first element in next tuple

Input Stream Input Stream

vs

vs
Input Streams



Example: Variable Length Decoding

❑ Solution 2: Remove dependency on variable length shift
o Instead of shifting right away, keep track of the accumulated shift amount

o Shift amount given to pipelined shifter as parameter

o If shift amount becomes larger than datapath width, subtract datapath width
• And shift buffer down fixed amount, by datapath width

Buffer

Shift amt

Datapath
Width

Datapath
Width

Shift

Pipelined 
Shifter

No more dependency on variable length shift



Performance of Accelerators

❑ Factors affecting accelerator performance
o Throughput of the computation pipeline

• How wide can we make the datapath?

• Can it be replicated? (Amdahl’s law? Chip resource limitations? Data dependency?)

o Performance of the on-board memory
• Is it sequential? Random? (Latency affects random access bandwidth for small memory systems 

with few DIMMs) – Effects may be order of magnitude

• Latency bound?

o Performance of host-side link (PCIe?)
• Latency bound?

❑ Any factor may be the critical bottleneck



Aside: Data Rate And Deadlocks

❑ Remember: Two-phase memory access
o On entity sends memory read requests, another receives data

❑ If multiple modules access memory, an arbiter is implemented
o Tries to do fair scheduling between requesters

o For efficiency, typically accepts burst requests
• Burst size of 8+ KB makes best use of DRAM architecture (Row buffers)

❑ Multiple streams of data may be merged later
o e.g., Three decompression cores working on separate columns, merged into rows

o What happens when the compression rate / decompressed data rate is different?



Aside: Data Rate And Deadlocks

❑ Merging streams with different data rates may cause deadlocks
o Data read for fast stream waiting in DRAM read queue

o DRAM request queue is full because of the fast stream

o Slow stream data not available for merging

❑ Solution: Flow control
o Each fetcher needs to manage a buffer (large enough to hide memory latency)

o Also keep track of how much data is in the buffer + how much request in flight

o Send memory request if current buffer + in flight data is smaller than buffer size
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FPGA Performance Snapshot (2018)

Xilinx Inc., “Accelerating DNNs with Xilinx Alveo Accelerator Cards,” 2018

*Nvidia P4 and V100 numbers taken from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance 
and Efficiency for AI Services, from the Data Center to the Network's Edge



FPGA Performance and Clock Speed

❑ Typical FPGA clock speed is much slower than CPU/GPUs
o Modern CPUs around 3 GHz

o Modern GPUs around 1.5 GHz

o FPGAs vary by design, typically up to 0.5 GHz

❑ Then how are FPGAs so fast?
o Simple answer: Efficient fine-grained parallelism

❑ But before we jump into that topic… Some background!



New Constraints in Hardware Design

❑ New from the perspective of software programmers

❑ Propagation delay and clock speed
o What kind of logic has high or low propagation delay?

o Logic depth

o Placement/Routing

o Fan-Out



Remember: Propagation Delay

❑ In a clock-synchronous sequential circuit, the “processing” 
(combinational logic) must fit in a clock cycle
o Combinational logic has propagation delay, which must be less than the clock cycle

o If not, clock speed must be lowered, losing performance!

❑ What kind of logic has high propagation delay?

Data from here
…must reach here

…before the next clock



Aside: Timing Violation Reports

❑ If there is a propagation delay that is too long, the synthesis tool will 
complain
o Typically part of the synthesis report

o e.g., “post_route_timing_summary.rpt” (Xilinx Vivado)



Aside: Timing Violation Reports



Factor #1: Logic Depth

❑ The most straightforward factor: Length of the critical path of the circuit
o What kind of logic results in high propagation delay?

o We need some insight to try to re-organize computation and remove timing 
violations

❑ One case: Simply, just too much logic in a single cycle/rule
o e.g., 16-dimension Euclidean distance

• Will 8 dimensions work?

o Many nested if-else statements
• Each conditional creates an expensive layer of multiplexers!

o Multiplication is expensive, compared to add/sub

cond

A

B

O

O = cond?A:B

Anecdote: Hrishikesh et.al., “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays.” ISCA 2002 



Factor #1: Logic Depth

❑ Problem with very large FIFOs
o e.g., mkSizedFIFO(64)

❑ FIFO semantics say something enqueued must be available next cycle
o Combinational path from all elements to fifo.first

o For many elements, many multiplexers!

❑ If latency is not a problem, consider chaining multiple FIFOs via rules

❑ Or, use embedded block RAM via mkSizedBRAMFIFO
o BRAM has hardwired addressing logic in non-configurable silicon



Factor #1: Logic Depth

❑ Common pitfall: Variable-length shift
o e.g., Given Bit#(32) b,s; computing b<<s is very expensive

❑ But, fixed-length shift is pretty much free

let a = b<<1; let a = b<<s; but

Simple re-labeling of wires,
no delay

Instantiates barrel shifter!
Very large delay
(Especially if s has many bits)

Suddenly not meeting timing!

Solution introduced later!



Factor #1: Logic Depth

❑ Common pitfall: Variable index access
o e.g., vector1[idx] <= x; //Where idx is a state variable (Reg#)

o Creates a tree of multiplexers, very deep if vector/index is large

❑ Common pitfall: Using modulo
o e.g., if ( (counter+1) % 32 == 0 ) begin …

o Involves an expensive division operation

o Replace with: 
if ( counter + 1 == 32 ) begin
counter <= 0; …

o If power of two, use bit masks: if ( counter & 32’b11111 == 32’b11111 ) begin …

Solution introduced later!

0

1

2

3

X



Factor #2: Placement And Routing

❑ Simplified introduction to placement/routing
o Mapping state elements and combinational circuits to limited chip space

• Done by the synthesis tool

• May add significant propagation delay to combinational circuits 

❑ Example:
o Complex combinational circuits 1 and 2 accessing state A

o Spatial constraints push combinational circuit 4 
far from state A

o Path from B to A via 4 is now very long!

B

3 A

4

2

1



Factor #2: Placement And Routing

❑ Rule of thumb:
o One combinational circuit (rule) should not access too many states

o One state should not be used by too many combinational circuits

❑ If state A can afford to be latency-tolerant, exploit it
o If “4” only writes to A, and latency tolerant,

Create a FIFO to act as intermediate step before writing

o If distance is very long, many FIFOs chained via rules
• If simple fifo.enq logic incurs a timing violation, this may be

the case

B

3 A

4

2

1



Factor #2: Placement And Routing

❑ A very wide bus may be difficult to route
o All wires (for each bit) needs to start from the same source,

o and arrive at the same destination within the same cycle

o As chip becomes fuller, this may not always be possible

❑ Rule of thumb (anecdotally)
o 256-bit busses at 250 MHz is around safe zone, for “normal”* computation



Factor #3: Fan-Out

❑ If a single register can be read by many circuits (High fan-out)
o At circuit level, takes longer to generate enough charge to signal all destinations

❑ FPGAs handle high fan-out by the synthesis tool automatically generating 
buffers and replicated registers
o However, still may add delay via the intermediate buffers

❑ Again, if register read/writes can be made latency-tolerant, do that!
o e.g., Transfer reads to register via a tree of FIFOs

dst

3 cycle latency, via 3 layers of rules

instead of dst

Fan-out of 4



Looking Back:
Why Are Processor Register Files Small?

❑ Why are register files 32-element? Why not 1024 or more?

x0

x1

x2

x31

…

M
u

x

D
em

u
x

write select read select Hierarchical design of a
8x1 multiplexer

Propagation delay increases with more registers!
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