
CS 250B: Modern Computer Systems

FPGA Accelerator Design Principles
Part 1: Designing Pipelines

Sang-Woo Jun

System Design For High Performance

❑ Designing hardware for low delay -> High clock speed

❑ Designing hardware for high throughput

❑ Techniques including
o Pipelining

o Wider datapath width

o Latency and duty cycle

o Implementing computation as filters

Pipelining: Back to Flynn’s Taxonomy

SISD
Single-Instruction
Single-Data
(Single-Core Processors)

SIMD
Single-Instruction
Multi-Data
(GPUs, SIMD Extensions)

MISD
Multi-Instruction
Single-Data
(Systolic Arrays,…)

CPU/GPU FPGA target

Implementing Computation as Filters

❑ Filter: Computation unit looking at a small window in a data stream,
emits a different stream
o Colloquial definition…

o Can be implemented architecturally, via MISD systolic array

❑ Only looks at a small window -> Small memory requirement!
o Even if input/output data is large, no need to store it all anywhere

o Everything is processed in a streaming manner

❑ Reduces memory requirement
o On-chip BRAM resources are precious

o If we can avoid going to off-chip memory, great performance save!

❑ “Discrete signal processing filter whose response to a signal is of finite
length”

❑ Simple intuition: Each output of the filter is a weighted sum of N most
recent input values
o Convolution of a 1D matrix on a streaming input

o Used to implement many filters including
low-pass, band-pass, high-pass, etc

o Weights are calculated using Discrete Fourier Transforms, etc

Example:
Finite Impulse Response (FIR) Filter

Naïve, Non-Filter Solution

❑ Store all input in array, and loop over it
o Two layer FOR loops, one over array, one over window (i-N to i)

o Either store or emit results of each 1st-level loop

o Uses one ALU, CPU-style sequential programming approach (1 op per cycle)

❑ This solution is very inefficient in hardware
o First, needs memory to store array

• Either precious on-chip memory, or expensive off-chip memory

o Second, only one element processed each cycle
• One cycle ~= One inner loop iteration -> N cycles per ouput!

• Better if we can break array into parallel portions, but adds circuit space overhead for managing
computational state of each processing element

Input

Pipelining an
Finite Impulse Response (FIR) Filter

❑ Every pipeline stage multiplies x[i]*b[j] and forwards accumulated result
o For window size of N, instantiate N multipliers!

o N multiplications per cycle + log(N) adders per cycle

o For N == 4, 7 ops per cycle!

b[1]

x[i]

b[2] b[3]

in

b[0] × × × ×

+ + out+

Pipelined tree of adders

N multipliers

× × × ×

+ +

+

in

out

FIR Filter In Bluespec
Static Elaboration!

Example Application:
Gravitational Force

❑
𝐺×𝑚1×𝑚2

(𝑥1−𝑥2)
2+(𝑦1−𝑦2)

2

❑ 8 instructions on a CPU – 8 cycles*
o One answer per 8 cycles

o Ignoring load/store

❑ FPGA: Pipelined systolic array
o One answer per 1 cycle

o 200 MHz vs. 3 GHz makes a
bit more sense!

o Very simple systolic array
– We can fit a lot into a chip
– Unlike cache-coherent cores

× × - sq - sq + ÷

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

Complicated with superscalar, OoO

Pipelined Implementation Details

× × - sq - sq + ÷

𝐺 ×𝑚1 ×𝑚2

(𝑥1 − 𝑥2)
2+(𝑦1 − 𝑦2)

2

G
m1
m2

x2

x1

y2

y1

flip-flops/registers

Latency: 8 cycles, throughput: 1

Pipelined Implementation Details

× ×

- sq

- sq + ÷

𝐺 ×𝑚1 ×𝑚2

(𝑥1 − 𝑥2)
2+(𝑦1 − 𝑦2)

2

G
m1
m2

x2

x1

y2

y1

Latency: 4 cycles, throughput: 1

Latency doesn’t matter too much if this is simple stream processing.
If later computation depends on earlier results, latency becomes important!

6 input elements per cycle (excluding G)! 24 bytes! Does our bus support it?

Pipelined Implementation Details

× ×

- sq

- sq + ÷

G
m1
m2

x2

x1

y2

y1

𝐺 ×𝑚1 ×𝑚2

(𝑥1 − 𝑥2)
2+(𝑦1 − 𝑦2)

2

- sq + ÷y2

y1
x2

x1

×

m1
m2

G

Latency: 4 cycles, throughput: 1 Latency: 5 cycles, throughput: 1/3

Important Aside: Little’s Law

❑ 𝐿 = 𝜆𝑊
o L: Number of requests in the system

o 𝜆: Throughput

o W: Latency

❑ Simple analysis: Given a system with latency W, in order to achieve
throughput, we need to be processing at least L things at once

Example: Floating Point Arithmetic in FPGA

❑ Floating point operations implemented using CLBs is inefficient
o CLB: Configurable Logic Blocks – Basic unit of reconfiguration

❑ Xilinx provides configurable floating point “cores”
o Uses DSP blocks to implement floating point operations

o Variable cycles of latency – variable maximum clock speed

o Configurable operations (+-*/…) and bit width (single/double/other)

o e.g., Single-precision (32-bits) floating point multiplication can have 7 cycles of
latency for the fastest clock speed/throughput

Example: Floating Point Arithmetic in FPGA

❑ Simple example: a×b×c
o Uses two multiplier cores, 7 cycle latencies each

o c also needs to be forwarded via 7 pipelined stages

❑ What happens if c has less than 7 forwarding stages?
o From 𝐿 = 𝜆𝑊 : If we have L = 4, W = still 7 → 𝜆=4/7

a,b ×

c

If a,b,c are not inserted every cycle, some cycles may emit garbage answers
Each intermediate value must be tagged with valid/invalid tag! Or…

Floating Point Arithmetic in Bluespec

FloatMult#(8,23) mult1 <- mkFloatMult;
FloatMult#(8,23) mult2 <- mkFloatMult;
FIFO#(Float) cQ <- mkSizedFIFO(7);
rule step1;
 Tuple3#(Float,Float,Float) a = inputQ.first;
 inputQ.deq;
 cQ.enq(tpl_3(a));
 mult1.put(tpl_1(a),tpl_2(a));
endrule
rule step2;
 Float r <- mult1.get;
 cQ.deq;
 mult2.put(r, cQ.first);
endrule
rule step3;
 let r <- mult2.get;
 outputQ.enq(r);
endrule

❑ Forwarding stages abstracted
using a FIFO
o FIFO length doesn’t have to

exactly match latency – Only
has to be larger
• Some freedom of internal

implementation

o Latency-insensitive (or less
sensitive design)

❑ If fifo.notEmpty, valid result!

Another example:
Memory/Network Access Latency

❑ Round-trip latency of DRAM/Network on FPGA is in the order of
microseconds

❑ Let’s assume 2 us network round-trip latency, FPGA at 200 MHz
o Network latency is 100 cycles

o Little’s law means 100 requests must be in flight to maintain full bandwidth,
meaning the forwarding pipeline must have more than 100 stages

o mkBRAMFIFO

req

Network

resp…

Request context forwarded

time

Replicating High-Latency Pipeline Stages

❑ Some pipeline stages may inherently have high latency, but cannot
handle many requests in flight at once
o The GCD module from before is a good example (Large W, but L=1)

o Replicate the high-latency pipeline stage to increase L

❑ Example: In-memory sorting
o Sorting 8-byte element in chunks of 8 KB (1024 elements)

o Sorting module using binary merge sorter requires 10 passes to sort 8 KB
• 1024*9 cycle latency (last pass can be streaming)

• Little’s law says we need 1024*9 elements in flight to maintain full bandwidth

• Sorter module needs to be replicated 9 times to maintain wire-speed

Analysis of the Floating Point Example

❑ Computation: a*b*c

❑ Let’s assume clock frequency of 200 MHz

❑ Input stream is three elements (a,b,c) per cycle = 12 Bytes/Cycle
o 200 MHz * 12 Bytes = 2.4 GB/s

o Fully pipelined implementation can consume data at 2.4 GB/s

o If we’re getting less than that, there is a bottleneck in computation!

❑ What if we want more than 1 tuple/cycle?

Increasing Datapath Width

❑ Increase the amount of data processed each cycle per pipeline
o Performance loss if the datapath is slower than processing

o If clock is fixed, datapath speed increased by widening

❑ Processing then may be modified for even higher throughput
o Replication, algorithm redesign, pipelining, …

Processing Processingvs

8 Bytes/Cycle @ 200 MHz = 1.6 GB/s 32 Bytes/Cycle @ 200 MHz = 6.4 GB/s

Important Aside: Roofline Model

❑ Simple performance model of a system with memory and processing

❑ Performance is bottlenecked by either processing or memory bandwidth
o As compute intensity (computation per memory access) increases, bottleneck

moves away from memory bandwidth to computation performance

o Not only FPGAs, good way to estimate what kind of performance we should be
getting in a given system

We don’t want our computation
implementation to be the bottleneck!
Goal: Saturate PCIe/Network/DRAM/etc

Example: Delta Compression

❑ For each element in array, subtract the previous element from the
current one
o If the delta is typically low, this reduces the average element size

o Efficient encoding can use less bits for smaller values

❑ Naïve implementation keeps one “last” value, initialized to zero
o Processes one element per cycle

o For 32 bit elements, 4 bytes per clock cycle (@ 200 MHz, 800 MB/s)

Subtract

Last
Value

NVMe SSDs provide ~4 GB/s!

Example: Delta Compression

❑ One solution: replicate engines
o Stream needs to be broken into independent chunks

o If processing expects in-order processing, chunks must be reassembled in order
• Requires memory for temporary sorted data

❑ Alternative: Wider datapath
o Easy for encoding! Independent per element

o For 32 bit elements, 16 bytes per clock cycle
(@ 200 MHz, 3.2 GB/s) DN

DN+1

DN+2

DN+3

Subtract

Last
Value

Subtract

Subtract

Subtract

CN

CN+1

CN+2

CN+3

Example: Delta Decompression

❑ Decoding is a bit more complicated
o DN+1 now depends on decoded DN

o New “Last Value” depends on all D data
• Very long combinational path, with a chain of 4 adders

❑ Most likely will reduce clock speed

CN

CN+1

CN+2

CN+3

Add

Last
Value

Add

Add

Add

DN

DN+1

DN+2

DN+3

Example: Delta Decompression

❑ One solution: Pipeline!
o The chained addition can be done first, in a pipelined way

• No dependency across tuples yet, so latency not a big issue

o Adding last value done at once after all chain adds are done
• Update last value in same cycle for the next input tuple

CN

CN+1

CN+2

CN+3

Last
Value

Add

Add

Add

DN

DN+1

DN+2

DN+3Add

Add

Add

Add

Some thinking is often necessary for efficient wide processing (Like efficient processing with SIMD) Q: What if 4x parallel
addition has long critical
path?

Datapath Width Bottleneck

❑ A single datapath with a small width can bottleneck the whole pipeline
o Unless it is on a path taken rarely

o In that case, other widths can be made a bit wider to statistically compensate

Processing Processing Processing

Bottleneck!

Latency And Duty Cycle

❑ We have a problem if 4 parallel additions have long critical path
o Why? Perhaps routing, fan-out, etc, …

❑ “Last Value” needs to be read, and then updated in the same cycle
o If we pipeline the adds, the next input tuple will work on stale data

❑ This issue happens a lot! Especially for computations requiring shifts…

Last
Value

Add Add Add

Update for N

Stale data from N-3

Latency And Duty Cycle

❑ For correct operation, pipeline must stall until dependency is resolved
o In previous example, only one tuple processed per 3 cycles

o Data throughput reduced to 1/3!

o Since only one adder is used per cycle anyways, might as well only instantiate one
adder and re-use that

❑ Duty cycle reduced to 1/3 …

Register/
FIFO

Some Prominent Sources of Latency

❑ Remember: Variable-length shift has long critical path

❑ Solution: Pipelined shifts
o Much smaller number of muxes (~1 typically) per cycle

o But, now has high latency

o Performance loss if dependency exists

❑ Remember: Variable-index array access has long critical path

❑ Solution: Pipelined tree of scatter/gather
o Much smaller number of muxes (~1 typically) per cycle

o But, now has high latency

o Performance loss if dependency exists

A[0]

A[1]

A[2]

A[3]

Like how we re-organized computation for wider datapaths, tricks can often be played to achieve both goals

Example: Variable Length Decoding

❑ Data packet consists of a header (length) and variable-length data
o We want to process one data element per cycle

o Assume maximum data length is smaller than the datapath

o Common pattern in data compression/encoding/packetization

❑ Since we have a fixed data path width, simplest solution uses variable-
length shifts
o e.g., buffer <= (buffer>>shiftamt) | (newdata<<shiftamt);

o Moves the next header to Lowest Significant Bit (LSB)

Shift

Buffer Buffer

New
Data

Shift

Datapath
WidthInput Stream

“Buffer” creates a dependency, reducing performance

Datapath
Width

Example: Variable Length Decoding

❑ Two separate dependencies to handle
o To do header decoding, header must be at LSB

o Data must be “packed”, so that each data element is sent without internal gaps

Example: Variable Length Decoding

❑ Solution 1: Relax dependency for header decoding
o May require data structure modification

o e.g., group more headers together, or store headers separately

❑ Grouping headers can have more data in pipeline, but not always
o Dependency between last element and first element in next tuple

Input Stream Input Stream

vs

vs
Input Streams

Example: Variable Length Decoding

❑ Solution 2: Remove dependency on variable length shift
o Instead of shifting right away, keep track of the accumulated shift amount

o Shift amount given to pipelined shifter as parameter

o If shift amount becomes larger than datapath width, subtract datapath width
• And shift buffer down fixed amount, by datapath width

Buffer

Shift amt

Datapath
Width

Datapath
Width

Shift

Pipelined
Shifter

No more dependency on variable length shift

Performance of Accelerators

❑ Factors affecting accelerator performance
o Throughput of the computation pipeline

• How wide can we make the datapath?

• Can it be replicated? (Amdahl’s law? Chip resource limitations? Data dependency?)

o Performance of the on-board memory
• Is it sequential? Random? (Latency affects random access bandwidth for small memory systems

with few DIMMs) – Effects may be order of magnitude

• Latency bound?

o Performance of host-side link (PCIe?)
• Latency bound?

❑ Any factor may be the critical bottleneck

Aside: Data Rate And Deadlocks

❑ Remember: Two-phase memory access
o On entity sends memory read requests, another receives data

❑ If multiple modules access memory, an arbiter is implemented
o Tries to do fair scheduling between requesters

o For efficiency, typically accepts burst requests
• Burst size of 8+ KB makes best use of DRAM architecture (Row buffers)

❑ Multiple streams of data may be merged later
o e.g., Three decompression cores working on separate columns, merged into rows

o What happens when the compression rate / decompressed data rate is different?

Aside: Data Rate And Deadlocks

❑ Merging streams with different data rates may cause deadlocks
o Data read for fast stream waiting in DRAM read queue

o DRAM request queue is full because of the fast stream

o Slow stream data not available for merging

❑ Solution: Flow control
o Each fetcher needs to manage a buffer (large enough to hide memory latency)

o Also keep track of how much data is in the buffer + how much request in flight

o Send memory request if current buffer + in flight data is smaller than buffer size

CS 250B: Modern Computer Systems

FPGA Accelerator Design Principles
Part 2: Timing Issues

Sang-Woo Jun

FPGA Performance Snapshot (2018)

Xilinx Inc., “Accelerating DNNs with Xilinx Alveo Accelerator Cards,” 2018

*Nvidia P4 and V100 numbers taken from Nvidia Technical Overview, "Deep Learning Platform, Giant Leaps in Performance
and Efficiency for AI Services, from the Data Center to the Network's Edge

FPGA Performance and Clock Speed

❑ Typical FPGA clock speed is much slower than CPU/GPUs
o Modern CPUs around 3 GHz

o Modern GPUs around 1.5 GHz

o FPGAs vary by design, typically up to 0.5 GHz

❑ Then how are FPGAs so fast?
o Simple answer: Efficient fine-grained parallelism

❑ But before we jump into that topic… Some background!

New Constraints in Hardware Design

❑ New from the perspective of software programmers

❑ Propagation delay and clock speed
o What kind of logic has high or low propagation delay?

o Logic depth

o Placement/Routing

o Fan-Out

Remember: Propagation Delay

❑ In a clock-synchronous sequential circuit, the “processing”
(combinational logic) must fit in a clock cycle
o Combinational logic has propagation delay, which must be less than the clock cycle

o If not, clock speed must be lowered, losing performance!

❑ What kind of logic has high propagation delay?

Data from here
…must reach here

…before the next clock

Aside: Timing Violation Reports

❑ If there is a propagation delay that is too long, the synthesis tool will
complain
o Typically part of the synthesis report

o e.g., “post_route_timing_summary.rpt” (Xilinx Vivado)

Aside: Timing Violation Reports

Factor #1: Logic Depth

❑ The most straightforward factor: Length of the critical path of the circuit
o What kind of logic results in high propagation delay?

o We need some insight to try to re-organize computation and remove timing
violations

❑ One case: Simply, just too much logic in a single cycle/rule
o e.g., 16-dimension Euclidean distance

• Will 8 dimensions work?

o Many nested if-else statements
• Each conditional creates an expensive layer of multiplexers!

o Multiplication is expensive, compared to add/sub

cond

A

B

O

O = cond?A:B

Anecdote: Hrishikesh et.al., “The Optimal Logic Depth Per Pipeline Stage is 6 to 8 FO4 Inverter Delays.” ISCA 2002

Factor #1: Logic Depth

❑ Problem with very large FIFOs
o e.g., mkSizedFIFO(64)

❑ FIFO semantics say something enqueued must be available next cycle
o Combinational path from all elements to fifo.first

o For many elements, many multiplexers!

❑ If latency is not a problem, consider chaining multiple FIFOs via rules

❑ Or, use embedded block RAM via mkSizedBRAMFIFO
o BRAM has hardwired addressing logic in non-configurable silicon

Factor #1: Logic Depth

❑ Common pitfall: Variable-length shift
o e.g., Given Bit#(32) b,s; computing b<<s is very expensive

❑ But, fixed-length shift is pretty much free

let a = b<<1; let a = b<<s; but

Simple re-labeling of wires,
no delay

Instantiates barrel shifter!
Very large delay
(Especially if s has many bits)

Suddenly not meeting timing!

Solution introduced later!

Factor #1: Logic Depth

❑ Common pitfall: Variable index access
o e.g., vector1[idx] <= x; //Where idx is a state variable (Reg#)

o Creates a tree of multiplexers, very deep if vector/index is large

❑ Common pitfall: Using modulo
o e.g., if ((counter+1) % 32 == 0) begin …

o Involves an expensive division operation

o Replace with:
if (counter + 1 == 32) begin
counter <= 0; …

o If power of two, use bit masks: if (counter & 32’b11111 == 32’b11111) begin …

Solution introduced later!

0

1

2

3

X

Factor #2: Placement And Routing

❑ Simplified introduction to placement/routing
o Mapping state elements and combinational circuits to limited chip space

• Done by the synthesis tool

• May add significant propagation delay to combinational circuits

❑ Example:
o Complex combinational circuits 1 and 2 accessing state A

o Spatial constraints push combinational circuit 4
far from state A

o Path from B to A via 4 is now very long!

B

3 A

4

2

1

Factor #2: Placement And Routing

❑ Rule of thumb:
o One combinational circuit (rule) should not access too many states

o One state should not be used by too many combinational circuits

❑ If state A can afford to be latency-tolerant, exploit it
o If “4” only writes to A, and latency tolerant,

Create a FIFO to act as intermediate step before writing

o If distance is very long, many FIFOs chained via rules
• If simple fifo.enq logic incurs a timing violation, this may be

the case

B

3 A

4

2

1

Factor #2: Placement And Routing

❑ A very wide bus may be difficult to route
o All wires (for each bit) needs to start from the same source,

o and arrive at the same destination within the same cycle

o As chip becomes fuller, this may not always be possible

❑ Rule of thumb (anecdotally)
o 256-bit busses at 250 MHz is around safe zone, for “normal”* computation

Factor #3: Fan-Out

❑ If a single register can be read by many circuits (High fan-out)
o At circuit level, takes longer to generate enough charge to signal all destinations

❑ FPGAs handle high fan-out by the synthesis tool automatically generating
buffers and replicated registers
o However, still may add delay via the intermediate buffers

❑ Again, if register read/writes can be made latency-tolerant, do that!
o e.g., Transfer reads to register via a tree of FIFOs

dst

3 cycle latency, via 3 layers of rules

instead of dst

Fan-out of 4

Looking Back:
Why Are Processor Register Files Small?

❑ Why are register files 32-element? Why not 1024 or more?

x0

x1

x2

x31

…

M
u

x

D
em

u
x

write select read select Hierarchical design of a
8x1 multiplexer

Propagation delay increases with more registers!

	Slide 1: CS 250B: Modern Computer Systems FPGA Accelerator Design Principles Part 1: Designing Pipelines
	Slide 2: System Design For High Performance
	Slide 3: Pipelining: Back to Flynn’s Taxonomy
	Slide 4: Implementing Computation as Filters
	Slide 5: Example: Finite Impulse Response (FIR) Filter
	Slide 6: Naïve, Non-Filter Solution
	Slide 7: Pipelining an Finite Impulse Response (FIR) Filter
	Slide 8: FIR Filter In Bluespec
	Slide 9: Example Application: Gravitational Force
	Slide 10: Pipelined Implementation Details
	Slide 11: Pipelined Implementation Details
	Slide 12: Pipelined Implementation Details
	Slide 13: Important Aside: Little’s Law
	Slide 14: Example: Floating Point Arithmetic in FPGA
	Slide 15: Example: Floating Point Arithmetic in FPGA
	Slide 16: Floating Point Arithmetic in Bluespec
	Slide 17: Another example: Memory/Network Access Latency
	Slide 18: Replicating High-Latency Pipeline Stages
	Slide 19: Analysis of the Floating Point Example
	Slide 20: Increasing Datapath Width
	Slide 21: Important Aside: Roofline Model
	Slide 22: Example: Delta Compression
	Slide 23: Example: Delta Compression
	Slide 24: Example: Delta Decompression
	Slide 25: Example: Delta Decompression
	Slide 26: Datapath Width Bottleneck
	Slide 27: Latency And Duty Cycle
	Slide 28: Latency And Duty Cycle
	Slide 29: Some Prominent Sources of Latency
	Slide 30: Example: Variable Length Decoding
	Slide 31: Example: Variable Length Decoding
	Slide 32: Example: Variable Length Decoding
	Slide 33: Example: Variable Length Decoding
	Slide 34: Performance of Accelerators
	Slide 35: Aside: Data Rate And Deadlocks
	Slide 36: Aside: Data Rate And Deadlocks
	Slide 37: CS 250B: Modern Computer Systems FPGA Accelerator Design Principles Part 2: Timing Issues
	Slide 38: FPGA Performance Snapshot (2018)
	Slide 39: FPGA Performance and Clock Speed
	Slide 40: New Constraints in Hardware Design
	Slide 41: Remember: Propagation Delay
	Slide 42: Aside: Timing Violation Reports
	Slide 43: Aside: Timing Violation Reports
	Slide 44: Factor #1: Logic Depth
	Slide 45: Factor #1: Logic Depth
	Slide 46: Factor #1: Logic Depth
	Slide 47: Factor #1: Logic Depth
	Slide 48: Factor #2: Placement And Routing
	Slide 49: Factor #2: Placement And Routing
	Slide 50: Factor #2: Placement And Routing
	Slide 51: Factor #3: Fan-Out
	Slide 52: Looking Back: Why Are Processor Register Files Small?

